Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Aust Crit Care ; 2023 Jan 17.
Article in English | MEDLINE | ID: covidwho-2176694

ABSTRACT

BACKGROUND: The COVID-19 pandemic highlighted major challenges with usual nutrition care processes, leading to reports of malnutrition and nutrition-related issues in these patients. OBJECTIVE: The objective of this study was to describe nutrition-related service delivery practices across hospitalisation in critically ill patients with COVID-19 admitted to Australian intensive care units (ICUs) in the initial pandemic phase. METHODS: This was a multicentre (nine site) observational study in Australia, linked with a national registry of critically ill patients with COVID-19. Adult patients with COVID-19 who were discharged to an acute ward following ICU admission were included over a 12-month period. Data are presented as n (%), median (interquartile range [IQR]), and odds ratio (OR [95% confidence interval {CI}]). RESULTS: A total of 103 patients were included. Oral nutrition was the most common mode of nutrition (93 [93%]). In the ICU, there were 53 (52%) patients seen by a dietitian (median 4 [2-8] occasions) and malnutrition screening occurred in 51 (50%) patients most commonly with the malnutrition screening tool (50 [98%]). The odds of receiving a higher malnutrition screening tool score increased by 36% for every screening in the ICU (1st to 4th, OR: 1.39 [95% CI: 1.05-1.77] p = 0.018) (indicating increasing risk of malnutrition). On the ward, 51 (50.5%) patients were seen by a dietitian (median time to consult: 44 [22.5-75] hours post ICU discharge). The odds of dietetic consult increased by 39% every week while on the ward (OR: 1.39 [1.03-1.89], p = 0.034). Patients who received mechanical ventilation (MV) were more likely to receive dietetic input than those who never received MV. CONCLUSIONS: During the initial phases of the COVID-19 pandemic in Australia, approximately half of the patients included were seen by a dietitian. An increased number of malnutrition screens were associated with a higher risk score in the ICU and likelihood of dietetic consult increased if patients received MV and as length of ward stay increased.

2.
J Clin Med ; 11(23)2022 11 26.
Article in English | MEDLINE | ID: covidwho-2123718

ABSTRACT

We describe the incidence, practice and associations with outcomes of awake prone positioning in patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19) in a national multicenter observational cohort study performed in 16 intensive care units in the Netherlands (PRoAcT−COVID-study). Patients were categorized in two groups, based on received treatment of awake prone positioning. The primary endpoint was practice of prone positioning. Secondary endpoint was 'treatment failure', a composite of intubation for invasive ventilation and death before day 28. We used propensity matching to control for observed confounding factors. In 546 patients, awake prone positioning was used in 88 (16.1%) patients. Prone positioning started within median 1 (0 to 2) days after ICU admission, sessions summed up to median 12.0 (8.4−14.5) hours for median 1.0 day. In the unmatched analysis (HR, 1.80 (1.41−2.31); p < 0.001), but not in the matched analysis (HR, 1.17 (0.87−1.59); p = 0.30), treatment failure occurred more often in patients that received prone positioning. The findings of this study are that awake prone positioning was used in one in six COVID-19 patients. Prone positioning started early, and sessions lasted long but were often discontinued because of need for intubation.

3.
Crit Care Clin ; 38(4): 761-774, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2048964

ABSTRACT

Pandemics, increases in disease incidence that affect multiple regions of the world, present huge challenges to health care systems and in particular to policymakers, public health authorities, clinicians, and all health care workers (HCWs). The recent COVID-19 pandemic has resulted in millions of severely ill patients, many of whom who have required hospital and intensive care unit (ICU) admission. The discipline of critical care is a vital and integral component of pandemic preparedness. Safe and effective critical care has the potential to improve outcomes, motivate individuals to seek timely medical attention, and attenuate the devastating sequelae of a severe pandemic. To achieve this, suitable critical care planning and preparation are essential.


Subject(s)
COVID-19 , Pandemics , Critical Care/methods , Health Personnel , Humans , Intensive Care Units
4.
Am J Respir Crit Care Med ; 205(10): 1159-1168, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1846610

ABSTRACT

Rationale: The outcomes of survivors of critical illness due to coronavirus disease (COVID-19) compared with non-COVID-19 are yet to be established. Objectives: We aimed to investigate new disability at 6 months in mechanically ventilated patients admitted to Australian ICUs with COVID-19 compared with non-COVID-19. Methods: We included critically ill patients with COVID-19 and non-COVID-19 from two prospective observational studies. Patients were eligible if they were adult (age ⩾ 8 yr) and received ⩾24 hours of mechanical ventilation. In addition, patients with COVID-19 were eligible with a positive laboratory PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Measurements and Main Results: Demographic, intervention, and hospital outcome data were obtained from electronic medical records. Survivors were contacted by telephone for functional outcomes with trained outcome assessors using the World Health Organization Disability Assessment Schedule 2.0. Between March 6, 2020, and April 21, 2021, 120 critically ill patients with COVID-19, and between August 2017 and January 2019, 199 critically ill patients without COVID-19, fulfilled the inclusion criteria. Patients with COVID-19 were older (median [interquartile range], 62 [55-71] vs. 58 [44-69] yr; P = 0.019) with a lower Acute Physiology and Chronic Health Evaluation II score (17 [13-20] vs. 19 [15-23]; P = 0.011). Although duration of ventilation was longer in patients with COVID-19 than in those without COVID-19 (12 [5-19] vs. 4.8 [2.3-8.8] d; P < 0.001), 180-day mortality was similar between the groups (39/120 [32.5%] vs. 70/199 [35.2%]; P = 0.715). The incidence of death or new disability at 180 days was similar (58/93 [62.4%] vs. 99/150 [66/0%]; P = 0.583). Conclusions: At 6 months, there was no difference in new disability for patients requiring mechanical ventilation for acute respiratory failure due to COVID-19 compared with non-COVID-19. Clinical trial registered with www.clinicaltrials.gov (NCT04401254).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Australia/epidemiology , Critical Illness , Humans , Respiration, Artificial , Survivors
5.
J Crit Care ; 70: 154047, 2022 08.
Article in English | MEDLINE | ID: covidwho-1814674

ABSTRACT

PURPOSE: Low tidal volume ventilation (LTVV) is associated with mortality in patients with acute respiratory distress syndrome. We investigated the association of LTVV with mortality in COVID-19 patients. METHODS: Secondary analysis of a national observational study in COVID-19 patients in the first wave of the pandemic. We compared COVID-19 patients that received LTVV, defined as controlled ventilation with a median tidal volume ≤ 6 mL/kg predicted body weight over the first 4 calendar days of ventilation, with patients that did not receive LTVV. The primary endpoint was 28-day mortality. In addition, we identified factors associated with use of LTVV. RESULTS: Of 903 patients, 294 (32.5%) received LTVV. Disease severity scores and ARDS classification was not different between the two patient groups. The primary endpoint, 28-day mortality, was met in 68 out of 294 patients (23.1%) that received LTVV versus in 193 out of 609 patients (31.7%) that did not receive LTVV (P < 0.001). LTVV was independently associated with 28-day mortality (HR, 0.68 (0.45 to 0.95); P = 0.025). Age, height, the initial tidal volume and continuous muscle paralysis was independently associated with use of LTVV. CONCLUSIONS: In this cohort of invasively ventilated COVID-19 patients, approximately a third of patients received LTVV. Use of LTVV was independently associated with reduced 28-day mortality. The initial tidal volume and continuous muscle paralysis were potentially modifiable factors associated with use of LTVV. These findings are important as they could help clinicians to recognize patients who are at risk of not receiving LTVV.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Intensive Care Units , Paralysis , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Tidal Volume/physiology
6.
J Crit Care ; 69: 154022, 2022 06.
Article in English | MEDLINE | ID: covidwho-1768292

ABSTRACT

PURPOSE: We determined the incidence of hypercapnia and associations with outcome in invasively ventilated COVID-19 patients. METHODS: Posthoc analysis of a national, multicenter, observational study in 22 ICUs. Patients were classified as 'hypercapnic' or 'normocapnic' in the first three days of invasive ventilation. Primary endpoint was prevalence of hypercapnia. Secondary endpoints were ventilator parameters, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, at day 28 and 90. RESULTS: Of 824 patients, 485 (58.9%) were hypercapnic. Hypercapnic patients had a higher BMI and had COPD, severe ARDS and venous thromboembolic events more often. Hypercapnic patients were ventilated with lower tidal volumes, higher respiratory rates, higher driving pressures, and with more mechanical power of ventilation. Hypercapnic patients had comparable minute volumes but higher ventilatory ratios than normocapnic patients. In hypercapnic patients, ventilation and LOS in ICU and hospital was longer, but mortality was comparable to normocapnic patients. CONCLUSION: Hypercapnia occurs often in invasively ventilated COVID-19 patients. Main differences between hypercapnic and normocapnic patients are severity of ARDS, occurrence of venous thromboembolic events, and a higher ventilation ratio. Hypercapnia has an association with duration of ventilation and LOS in ICU and hospital, but not with mortality.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , COVID-19/therapy , Humans , Hypercapnia , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/etiology
7.
Front Med (Lausanne) ; 8: 780005, 2021.
Article in English | MEDLINE | ID: covidwho-1753375

ABSTRACT

The purpose of this study was to compare and understand differences in the use of low tidal volume ventilation (LTVV) between females and males with acute respiratory distress syndrome (ARDS) related to coronavirus disease 2019 (COVID-19). This is a post-hoc analysis of an observational study in invasively ventilated patients with ARDS related to COVID-19 in 22 ICUs in the Netherlands. The primary endpoint was the use of LTVV, defined as having received a median tidal volume (VT) ≤6 ml/kg predicted body weight (PBW) during controlled ventilation. A mediation analysis was used to investigate the impact of anthropometric factors, next to the impact of sex per se. The analysis included 934 patients, 251 females and 683 males. All the patients had ARDS, and there were no differences in ARDS severity between the sexes. On the first day of ventilation, females received ventilation with a higher median VT compared with males [6.8 (interquartile range (IQR) 6.0-7.6 vs. 6.3 (IQR 5.8-6.9) ml/kg PBW; p < 0.001]. Consequently, females received LTVV less often than males (23 vs. 34%; p = 0.003). The difference in the use of LTVV became smaller but persisted over the next days (27 vs. 36%; p = 0.046 at day 2 and 28 vs. 38%; p = 0.030 at day 3). The difference in the use LTVV was significantly mediated by sex per se [average direct effect of the female sex, 7.5% (95% CI, 1.7-13.3%); p = 0.011] and by differences in the body height [average causal mediation effect, -17.5% (-21.5 to -13.5%); p < 0.001], but not by the differences in actual body weight [average causal mediation effect, 0.2% (-0.8 to 1.2%); p = 0.715]. In conclusion, in this cohort of patients with ARDS related to COVID-19, females received LTVV less often than males in the first days of invasive ventilation. The difference in the use of LTVV was mainly driven by an anthropometric factor, namely, body height. Use of LTVV may improve by paying attention to correct titration of VT, which should be based on PBW, which is a function of body height.

8.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1743570

ABSTRACT

The purpose of this study was to compare and understand differences in the use of low tidal volume ventilation (LTVV) between females and males with acute respiratory distress syndrome (ARDS) related to coronavirus disease 2019 (COVID-19). This is a post-hoc analysis of an observational study in invasively ventilated patients with ARDS related to COVID-19 in 22 ICUs in the Netherlands. The primary endpoint was the use of LTVV, defined as having received a median tidal volume (VT) ≤6 ml/kg predicted body weight (PBW) during controlled ventilation. A mediation analysis was used to investigate the impact of anthropometric factors, next to the impact of sex per se. The analysis included 934 patients, 251 females and 683 males. All the patients had ARDS, and there were no differences in ARDS severity between the sexes. On the first day of ventilation, females received ventilation with a higher median VT compared with males [6.8 (interquartile range (IQR) 6.0–7.6 vs. 6.3 (IQR 5.8–6.9) ml/kg PBW;p < 0.001]. Consequently, females received LTVV less often than males (23 vs. 34%;p = 0.003). The difference in the use of LTVV became smaller but persisted over the next days (27 vs. 36%;p = 0.046 at day 2 and 28 vs. 38%;p = 0.030 at day 3). The difference in the use LTVV was significantly mediated by sex per se [average direct effect of the female sex, 7.5% (95% CI, 1.7–13.3%);p = 0.011] and by differences in the body height [average causal mediation effect, −17.5% (−21.5 to −13.5%);p < 0.001], but not by the differences in actual body weight [average causal mediation effect, 0.2% (−0.8 to 1.2%);p = 0.715]. In conclusion, in this cohort of patients with ARDS related to COVID-19, females received LTVV less often than males in the first days of invasive ventilation. The difference in the use of LTVV was mainly driven by an anthropometric factor, namely, body height. Use of LTVV may improve by paying attention to correct titration of VT, which should be based on PBW, which is a function of body height.

9.
Critical Care Medicine ; 50:126-126, 2022.
Article in English | Academic Search Complete | ID: covidwho-1594673

ABSTRACT

This is the first study showing that the application of a subphenotype strategy employing only widely available clinical variables is feasible in a cohort of COVID-19 ARDS patients. B Introduction/Hypothesis: b Acute respiratory distress syndrome (ARDS) is a heterogeneous condition. B Conclusions: b When applying subphenotypes previously found in ARDS cohorts to COVID-19 patients with ARDS, the same differential clinical, laboratorial and outcome characteristics were observed. [Extracted from the article] Copyright of Critical Care Medicine is the property of Lippincott Williams & Wilkins and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

11.
Crit Care ; 25(1): 382, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1506095

ABSTRACT

BACKGROUND: There are few reports of new functional impairment following critical illness from COVID-19. We aimed to describe the incidence of death or new disability, functional impairment and changes in health-related quality of life of patients after COVID-19 critical illness at 6 months. METHODS: In a nationally representative, multicenter, prospective cohort study of COVID-19 critical illness, we determined the prevalence of death or new disability at 6 months, the primary outcome. We measured mortality, new disability and return to work with changes in the World Health Organization Disability Assessment Schedule 2.0 12L (WHODAS) and health status with the EQ5D-5LTM. RESULTS: Of 274 eligible patients, 212 were enrolled from 30 hospitals. The median age was 61 (51-70) years, and 124 (58.5%) patients were male. At 6 months, 43/160 (26.9%) patients died and 42/108 (38.9%) responding survivors reported new disability. Compared to pre-illness, the WHODAS percentage score worsened (mean difference (MD), 10.40% [95% CI 7.06-13.77]; p < 0.001). Thirteen (11.4%) survivors had not returned to work due to poor health. There was a decrease in the EQ-5D-5LTM utility score (MD, - 0.19 [- 0.28 to - 0.10]; p < 0.001). At 6 months, 82 of 115 (71.3%) patients reported persistent symptoms. The independent predictors of death or new disability were higher severity of illness and increased frailty. CONCLUSIONS: At six months after COVID-19 critical illness, death and new disability was substantial. Over a third of survivors had new disability, which was widespread across all areas of functioning. Clinical trial registration NCT04401254 May 26, 2020.


Subject(s)
COVID-19/epidemiology , Critical Illness/epidemiology , Disabled Persons , Recovery of Function/physiology , Return to Work/trends , Aged , Aged, 80 and over , Australia/epidemiology , COVID-19/diagnosis , COVID-19/therapy , Cohort Studies , Critical Illness/therapy , Female , Follow-Up Studies , Health Status , Humans , Male , Middle Aged , Mortality/trends , Prospective Studies , Time Factors , Treatment Outcome
12.
J Crit Care ; 65: 237-245, 2021 10.
Article in English | MEDLINE | ID: covidwho-1300867

ABSTRACT

PURPOSE: We investigated changes in ARDS severity and associations with outcome in COVID-19 ARDS patients. METHODS: We compared outcomes in patients with ARDS classified as 'mild', 'moderate' or 'severe' at calendar day 1, and after reclassification at calendar day 2. The primary endpoint was 28-day mortality. We also identified which ventilatory parameters had an association with presence of severe ARDS at day 2. We repeated the analysis for reclassification at calendar day 4. RESULTS: Of 895 patients, 8.5%, 60.1% and 31.4% had mild, moderate and severe ARDS at day 1. These proportions were 13.5%, 72.6% and 13.9% at day 2. 28-day mortality was 25.3%, 31.3% and 32.0% in patients with mild, moderate and severe ARDS at day 1 (p = 0.537), compared to 28.6%, 29.2% and 44.3% in patients reclassified at day 2 (p = 0.005). No ventilatory parameter had an independent association with presence of severe ARDS at day 2. Findings were not different reclassifying at day 4. CONCLUSIONS: In this cohort of COVID-19 patients, ARDS severity and mortality between severity classes changed substantially over the first 4 days of ventilation. These findings are important, as reclassification could help identify target patients that may benefit from alternative approaches.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung , Respiration, Artificial , SARS-CoV-2
14.
Ann Transl Med ; 9(9): 813, 2021 May.
Article in English | MEDLINE | ID: covidwho-1257379

ABSTRACT

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) may need hospitalization for supplemental oxygen, and some need intensive care unit (ICU) admission for escalation of care. Practice of adjunctive and supportive treatments remain uncertain and may vary widely between countries, within countries between hospitals, and possibly even within ICUs. We aim to investigate practice of adjunctive and supportive treatments, and their associations with outcome, in critically ill COVID-19 patients. METHODS: The 'PRactice of Adjunctive Treatments in Intensive Care Unit Patients with Coronavirus Disease 2019' (PRoAcT-COVID) study is a national, observational study to be undertaken in a large set of ICUs in The Netherlands. The PRoAcT-COVID includes consecutive ICU patients, admitted because of COVID-19 to one of the participating ICUs during a 3-month period. Daily follow-up lasts 28 days. The primary endpoint is a combination of adjunctive treatments, including types of oxygen support, ventilation, rescue therapies for hypoxemia refractory to supplementary oxygen or during invasive ventilation, other adjunctive and supportive treatments, and experimental therapies. We will also collect tracheostomy rate, duration of invasive ventilation and ventilator-free days and alive at day 28 (VFD-28), ICU and hospital length of stay, and the mortality rates in the ICU, hospital and at day 90. DISCUSSION: The PRoAcT-COVID study is an observational study combining high density treatment data with relevant clinical outcomes. Information on treatment practices, and their associations with outcomes in COVID-19 patients in highly and urgently needed. The results of the PRoAcT-COVID study will be rapidly available, and circulated through online presentations, such as webinars and electronic conferences, and publications in peer-reviewed journals-findings will also be presented at a dedicated website. At request, and after agreement of the PRoAcT-COVID steering committee, source data will be made available through local, regional and national anonymized datasets. TRIAL REGISTRATION: The PRoAcT-COVID study is registered at clinicaltrials.gov (study identifier NCT04719182).

15.
Crit Care ; 25(1): 171, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232432

ABSTRACT

BACKGROUND: Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS. METHODS: Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS. RESULTS: A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality. CONCLUSIONS: There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model. TRIAL REGISTRATION: ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.


Subject(s)
COVID-19/mortality , Patient Acuity , Respiration, Artificial , Respiratory Dead Space , Respiratory Distress Syndrome/therapy , Adult , Biomarkers , COVID-19/complications , COVID-19/physiopathology , Female , Humans , Intensive Care Units , Male , Prognosis , ROC Curve , Respiratory Distress Syndrome/etiology , Respiratory Function Tests , Respiratory Mechanics , Retrospective Studies
16.
Lancet Respir Med ; 9(2): 139-148, 2021 02.
Article in English | MEDLINE | ID: covidwho-1199179

ABSTRACT

BACKGROUND: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak. METHODS: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342). FINDINGS: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7-7·1), PEEP was 14·0 cm H2O (IQR 11·0-15·0), and driving pressure was 14·0 cm H2O (11·2-16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0-39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0-15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation. INTERPRETATION: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19. FUNDING: Amsterdam University Medical Centers, location Academic Medical Center.


Subject(s)
COVID-19/therapy , Respiration, Artificial , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Netherlands , Retrospective Studies , Treatment Outcome
18.
Ann Transl Med ; 8(19): 1251, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-994852

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is rapidly expanding across the world, with more than 100,000 new cases each day as of end-June 2020. Healthcare workers are struggling to provide the best care for COVID-19 patients. Approaches for invasive ventilation vary widely between and within countries and new insights are acquired rapidly. We aim to investigate invasive ventilation practices and outcome in COVID-19 patients in the Netherlands. METHODS: PRoVENT-COVID ('study of PRactice of VENTilation in COVID-19') is an investigator-initiated national, multicenter observational study to be undertaken in intensive care units (ICUs) in The Netherlands. Consecutive COVID-19 patients aged 18 years or older, who are receiving invasive ventilation in the participating ICUs, are to be enrolled during a 10-week period, with a daily follow-up of 7 days. The primary outcome is ventilatory management (including tidal volume expressed as mL/kg predicted body weight and positive end-expiratory pressure expressed as cmH2O) during the first 3 days of ventilation. Secondary outcomes include other ventilatory variables, use of rescue therapies for refractory hypoxemia such as prone positioning and extracorporeal membrane oxygenation, use of sedatives, vasopressors and inotropes; daily cumulative fluid balances; acute kidney injury; ventilator-free days and alive at day 28 (VFD-28), duration of ICU and hospital stay, and ICU, hospital and 90-day mortality. DISCUSSION: PRoVENT-COVID will be the largest observational study to date, with high density ventilatory data and major outcomes. There is urgent need for a better understanding of ventilation practices, and the effects of ventilator settings on outcomes in COVID-19 patients. The results of PRoVENT-COVID will be rapidly disseminated through electronic presentations, such as webinars and electronic conferences, and publications in international peer-reviewed journals. Access to source data will be made available through local, regional and national anonymized datasets on request, and after agreement of the PRoVENT-COVID steering committee. TRIAL REGISTRATION: PRoVENT-COVID is registered at clinicaltrials.gov (identifier NCT04346342).

19.
Intensive Care Med ; 46(12): 2157-2167, 2020 12.
Article in English | MEDLINE | ID: covidwho-911887

ABSTRACT

Care for patients with acute respiratory distress syndrome (ARDS) has changed considerably over the 50 years since its original description. Indeed, standards of care continue to evolve as does how this clinical entity is defined and how patients are grouped and treated in clinical practice. In this narrative review we discuss current standards - treatments that have a solid evidence base and are well established as targets for usual care - and also evolving standards - treatments that have promise and may become widely adopted in the future. We focus on three broad domains of ventilatory management, ventilation adjuncts, and pharmacotherapy. Current standards for ventilatory management include limitation of tidal volume and airway pressure and standard approaches to setting PEEP, while evolving standards might focus on limitation of driving pressure or mechanical power, individual titration of PEEP, and monitoring efforts during spontaneous breathing. Current standards in ventilation adjuncts include prone positioning in moderate-severe ARDS and veno-venous extracorporeal life support after prone positioning in patients with severe hypoxemia or who are difficult to ventilate. Pharmacotherapy current standards include corticosteroids for patients with ARDS due to COVID-19 and employing a conservative fluid strategy for patients not in shock; evolving standards may include steroids for ARDS not related to COVID-19, or specific biological agents being tested in appropriate sub-phenotypes of ARDS. While much progress has been made, certainly significant work remains to be done and we look forward to these future developments.


Subject(s)
Respiratory Distress Syndrome/therapy , Standard of Care/trends , COVID-19/complications , COVID-19/physiopathology , Fluid Therapy/methods , Fluid Therapy/trends , Humans , Prone Position/physiology , Respiratory Distress Syndrome/physiopathology
20.
Lancet ; 396(10256): 959-967, 2020 10 03.
Article in English | MEDLINE | ID: covidwho-748089

ABSTRACT

BACKGROUND: The efficacy and safety of azithromycin in the treatment of COVID-19 remain uncertain. We assessed whether adding azithromycin to standard of care, which included hydroxychloroquine, would improve clinical outcomes of patients admitted to the hospital with severe COVID-19. METHODS: We did an open-label, randomised clinical trial at 57 centres in Brazil. We enrolled patients admitted to hospital with suspected or confirmed COVID-19 and at least one additional severity criteria as follows: use of oxygen supplementation of more than 4 L/min flow; use of high-flow nasal cannula; use of non-invasive mechanical ventilation; or use of invasive mechanical ventilation. Patients were randomly assigned (1:1) to azithromycin (500 mg via oral, nasogastric, or intravenous administration once daily for 10 days) plus standard of care or to standard of care without macrolides. All patients received hydroxychloroquine (400 mg twice daily for 10 days) because that was part of standard of care treatment in Brazil for patients with severe COVID-19. The primary outcome, assessed by an independent adjudication committee masked to treatment allocation, was clinical status at day 15 after randomisation, assessed by a six-point ordinal scale, with levels ranging from 1 to 6 and higher scores indicating a worse condition (with odds ratio [OR] greater than 1·00 favouring the control group). The primary outcome was assessed in all patients in the intention-to-treat (ITT) population who had severe acute respiratory syndrome coronavirus 2 infection confirmed by molecular or serological testing before randomisation (ie, modified ITT [mITT] population). Safety was assessed in all patients according to which treatment they received, regardless of original group assignment. This trial was registered at ClinicalTrials.gov, NCT04321278. FINDINGS: 447 patients were enrolled from March 28 to May 19, 2020. COVID-19 was confirmed in 397 patients who constituted the mITT population, of whom 214 were assigned to the azithromycin group and 183 to the control group. In the mITT population, the primary endpoint was not significantly different between the azithromycin and control groups (OR 1·36 [95% CI 0·94-1·97], p=0·11). Rates of adverse events, including clinically relevant ventricular arrhythmias, resuscitated cardiac arrest, acute kidney failure, and corrected QT interval prolongation, were not significantly different between groups. INTERPRETATION: In patients with severe COVID-19, adding azithromycin to standard of care treatment (which included hydroxychloroquine) did not improve clinical outcomes. Our findings do not support the routine use of azithromycin in combination with hydroxychloroquine in patients with severe COVID-19. FUNDING: COALITION COVID-19 Brazil and EMS.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Aged , Antiviral Agents/adverse effects , Azithromycin/adverse effects , Betacoronavirus , Brazil/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Drug Therapy, Combination , Female , Humans , Hydroxychloroquine/adverse effects , Length of Stay , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Respiratory Therapy , SARS-CoV-2 , Standard of Care , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL